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On the Rayleigh-Taylor problem in magneto- 
hydrodynamics with finite resistivity 

By J. D. JUKES 
Culhani Laboratory, Atomic Energy Research Establishment, Harwell 

(Reccivrd 7 September 1962 and in revised form 28 Novcmbcr 1962) 

In order to elucidate the importance of the infinite conductivity assumption 
in MHD a simple problem has been studied. This is a Rayleigh-Taylor problem 
of two superposed fluids under gravity partially stabilized by a uniform, hori- 
zontal magnetic field. It is found that the inclusion of a small, but finite resistivity 
introduces new and unexpected solutions. For instance, moderately long, 
' stabilized ' waves are now found to grow aperiodically and unexpectedly rapidly 
at  a rate cc (resistivity)*. Other modes are found to be periodic and damped 
at  a rate cc (resistivity)+. 

1. Introduction 
It has been conjectured that the assumption of infinite electrical conductivity 

for a fluid, apart from the neglect of other dissipative processes, may yield serious 
discrepancies between theoretical predictions of idealized magnetohydro- 
dynamics (MHD) and experiment (Tayler 1960; Jukes 1961). For example, 
there are the stability properties of laboratory plasmas in the hard core geometry 
(Bickerton et al. 1961). Mathematically speaking the omission of even the 
smallest resistivity reduces the order of the equations and experience should 
make us wary lest in such circumstances mathematical solutions give a mis- 
leading understanding of physical reality, We therefore consider it important to 
solve a simple MHD stability problem which does include finite resistivity and 
to  compare these new solutions with the old ones of idealized MHD theory. It may 
iiot matter for this restricted purpose that the model is very simple, even to the 
extent of having no practical or experimental consequence. Of course, an 
ultimate goal would be to find a model of a situation sufficiently simple to 
aiialyse, which could also be subject to experimental test. 

The problem discussed at length in this paper is a modification of the so-called 
Rayleigh-Taylor problem (Chandrasekhar 1961), which in essence is the 
stabiIity of two fluids of different densities supported one on the other and 
subjected to an acceleration, or in a vertical gravitational field. We shall con- 
sider the case when one of the fluids is electrically conducting and the system is 
placed in a uniform, horizontal magnetic field. If  the fluid which is uppermost 
is also the heavier the system is potentially gravitationally unstable, but if it is 
also electrically conducting it may also be stable to waves of sufficiently short 
length propagating along the field lines. Physically this is because the tubes of 
magnetic flux are constrained to move with the fluid and to bend them requires 
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energy. ln fact, idealized MHD theory predicts complete stability for all wave- 
lengths shorter than a critical calculable value. Waves which propagate cwross 
the field lines and which we do not consider here, may not be required to bend 
the flux tubes and so may be unstable. For this reason, amongst others, it may 
not be possible to perform ail actual experiment on so simple a system. 

We further assume for simplicity that the fluids are incompressible, inviscid 
and with no surface tension at  their interface. One does not expect the first and 
third assumptions to omit any vital physics. The second assumption is more 
seriously unrealistic, since viscosity would obviously influence the growth or 
decay rates of perturbations. However, one would not expect viscous dissipatioii 
t o  eliminate an aperiodically growing perturbation. In  any case, we are not 
attempting here a full understanding of a physically realizable situation but 
merely examining shortcomings in an existing assumption. 

One finds that the introduction of higher order terms radically changes the 
possible solutions. With small, but finite resistivity, new branches are found 
corresponding in one instance to aperiodically growing disturbances at  wave- 
lengths which appeared to be stabilized according to the predictions of idealized 
MHD theory. 

2. The model and the equations of the problem 
We consider a partially conducting fluid of density p1 and resistivity TI 

occupying the half space 0 > z > - 03 and supported by a non-conducting fluid 
of density pz occupying the half space +a > z > 0. Both are placed in a hori- 
zontal magnetic field B = (B, 0,O) and a vertical gravitational field g = (0, 0, g) 
as in figure 1. The equilibrium fluid pressure p ,  which satisfies the hydrostatic 
equation pg = gradp, is assumed to be always positive and to support the fluid. 
Thus for z < 0, r, = p1 gz + pc  where pe  can be made an arbitrarily large constant 
to satisfy p > 0 as z -+ - co as far as we please. The absolute magnitude of r, is 
irrelevant in this problem. 

Let us consider perturbations of the equilibrium of the form 

R e f ( z ) c x p i ( k x + o t ) .  

Note that we are deliberately restricting our discussion to modes with wave 
vector k satisfying k x B = 0. For these modes certain components of the per- 
turbed quantities vanish and we shall denote the remaining components as 
follows: velocity (u, 0, w), magnetic field (Br, 0, Bz), fluid pressure Sp (scalar). 
The equations of motion and continuity for the conducting fluid (suffix I )  are 

p1 iwzo1 = -D 8pl - B(DBX1 - ikBsl), 

p1 iwu,  = - ilc sp., 
(1) 

( 2 )  

and D w + i k u l  = 0, ( 3 )  

where D E 2 / k .  In the conducting fluid we shall assume a generalized form of 

yj  = E+vxB-V$ ,  (4) 
Ohm’s law given by 

where j is the current, E the electric field. 6, may be any scalar function of, say, 
pressure. We assume that the resistivity is constant and isotropic and we neglect 
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displacement currents. By taking the curl of equation (4) aiid using the Maxwell 
cquations (in rationalized e.m. units) 

curlB = j, (5) 

curl E = - 2 1 3  B, (6) 

div B = 0, (7)  
iuBcl - ikw, B = 7 ( D2 - k2)  B,,, ( 8 )  
~ w B ~ ,  -t Dw, H = >1(D2 - k2)  BZI, (9) 

(10) 

we can obtain 

DBzl + ikBrl = 0. 

z 
FIGURE 1.  The geomctry of the probl(mi. 

Thus, from ( I ) ,  ( 2 ) ,  (3) ,  (lo),  
( 0 2  - k2) w1 = (kB/wp,)  (D2 - k2) BZ1. 

iEW, = B-I[ iw - 1 1 ( 0 2  - k”)] BE,. 
(11) 

(‘3) ltearranging (S), 

In the non-conducting fluid (suffix 3 )  there is no current, so that 

Also 

j, = curl B, = DBZz - ikBz2 = 0. 

div B, = 0 = DBz, + ikB,-. 
These equations and the equations of motion for the non-conductor ( ( I ) ,  ( 2 ) ,  (3) 

with j = 0) give (D”k2)BZZ = 0, (15) 

(16) 

f3pj = - ; k p , ( W / L 2 ) D U l j  ( j  = 1 , q .  (17)  

(D, - k2) w2 = 0. 
In both fluids from ( 2 )  and (3) 

Along the perturbed fluid interface, pressures in both fluids are equal as well as 
their vertical displacement 6. Because the densities are discontinuous a t  the 
interface, gravity forces occur in the displacement. Hence 

jyl da +pl GI = (f3p2lO + P, <g, (IS) 

w h r e  ( I  9) 
12-2 
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and is the pressure perturbation of the fluids evaluated at x = 0. The 
second term of (18), the electromagnetic force across the displacement, is of 
second-order smallness and negligible in the case of finite resistivity. It has been 
included for illustration because it occurs iii infinite-conductivity theory where 
there is a finite skin current of vanishing t,hickness, the product of current 
density and thickness remaining finite. At z = 0 combining (17), (18) and (19) 

(p1 Duj, -p2 Dw,) io/P = (p1 - p J  gw,,/io. (20) 

Other boundary conditions across the interface in addition to (19) and (20) are 
that (i) B, is continuous, (ii) DB, is continuous (because B, is). Also (iii) perturba- 
tions must be bounded as IzI + m. 

3. The deduction of the dispersion equation 
Because of obvious symmetries there can be no loss of generality in assuming 

that k 2 0 and R e o  > 0. Equations (11) and (13) can be completely solved in 
the form BZ1/B = Alea3+A,e"Z, (21) 

wl/ V = A, ea3 + A, elcc, ( 2 2 )  
where v, = B2/p1. (23) 

The A's are arbitrary constants (to be eliminated) and a is an eigen-value which 
must be chosen with a positive real part so that physical quantities are bounded 
as z+ - co. This boundary condition eliminates the second exponential solutions 
of opposite sign. 

Likewise in the non-conducting fluid we consider only solutions which are 
obviously bounded as z + +GO, 

w21V = A2e-k3, (24) 

B,JB = A, e-ko. (25) 

Substituting (21), (22) back into (12) gives 

iE(A,eat+A,ek") V = [ iw(A,ea3+Azekz) - - (a2-k2)A1eaz] .  

Since this equation must hold for all z, both 

and 

ikVA, = [ i w - y ( a 2 - k 2 ) ] A 1  

ikVA, = iwA,. 

Substituting (21) and ( 2 2 )  back into (11) gives 

and ( 2 2 )  and (34) into (19) gives 
w A ,  = EVA,, 

A ,  + A ,  = A,. 

The boundary conditions (i), (ii) give 

A, + A ,  = A, and aA, + kA, = - IcA,. 

These last six relations are sufficient to eliminate the six A's and to relate a to I s ,  
w as later in (39). The dispersion equation w = o ( k )  can be obtained from the 
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interface condition (20). Evaluating first Dwl/w12 and Dw2/w12 at z = 0 from 
( 2 2 ) ,  (24), (19), as 

DwJtt'la = I ~ [ a - & ~ ( a + l i ) / l i ~ V ~ ] / [ k - j ~ ~  (a+ k ) / k 2 V 2 ] ,  (26 )  

and Dw2/wl2 = - k ,  (27) 

substituting into (20) gives the required dispersion equation, 

- (p1 -p2) (gklo2) ( k  - &Jya + k)/k"vq 

= pl{a - goya + k ) / k T )  +p2{k - QoP(a + k)/k2V2}, (38) 

(39) 

where a is the root of 
a2 = k2 + (k2 V 2  - W2)/ioy7 

which has Re (a )  > 0. Let us put the equations (%), (36 )  into dimensionless form 
with the substitutions 

(30) 

(31) 

c = HIK, (33) 

where 12 p2 - *(pl +p2)  Q2G2+ $(PI - ~ 2 )  (3  - Q2G2)/ft2G, (33) 

h' -PI+ B ( P ~ + P , ) ~ ' G ~ + ~ ( P ~ - P ~ ) ~ .  (34) 

v2 = "2'p11 (1 = w V/g,  G = g / k  V 2 ,  R = V 3 / g q ,  
and f = a / k ,  with Re[ > 0 only. 

Then 

and the dispersion equation may be conveniently written as 

5 2  = 1 + (1 - Q2C2) qia, 

To be definite, we take p1 > p2. The potentially unstable case then corresponds 
to g (or G )  > 0 and the gravitationally stable case to g (or G )  < 0. In  the latter 
case we shall reverse the sign of V too, so that R remains positive and the sign of 
(1 is unchanged. A complete solution of the problem is to find t2 (possibly com- 
plex, but with Re t2 3 0) for all real G (00 > G > - co) for positive, real k and 
positive values of the parameter R. We shall consider the potentially unstable 
case G > 0 and then the potentially stable case G < 0. In  each case we shall give 
the infinite-conductivity solution and then find the solution for small, but finite 
resistivity R 3 I by an expansion treatment of (31) and (32 ) .  

( a )  The gravitationally unstable case, G' > 0 

The infinite conductivity solution is obtained by setting R = co and therefore 
[ = 00, K = 0, to give 

Q; = %- W ( P 1  -P2))/(P1 +Pz) Q27 (35) 

thence G2Q; - 1 = (--) P1- P2 (1 - G). 
P1 + Pz ~~ 

For R = oc: 
(2; is real and positive if G < 2 p l / ( p l - p 2 ) ,  implying a stable oscillation; 
Qi is real and negative if G > 2pl/(pl  -p2), implying a growing and the accom- 

paiiying decaying, aperiodic mode. 
We now consider the most important case when R is large, but remains finite. 

We shall first show that there exists an aperiodically growing solution even for 



182 J .  D. Jukes 

G < 2p1/(p1 -p2) .  Let us set i1 = - $3 where this solution corresponds to a real, 
positive /?. From (3  1) 

For small /3 - 0, 
( =  [1+(1+,B2G2)B/b]l .  ( 3 7 )  

6 --f R$p-:, 

H - (PI  - P2)/GP2, 

h'A - i (P1 -Pz )  [{2P,/(P,-P,)l- GI- 

From tlie dispersion equation (33) we see that there can be a solution when 
G < 2pl/(pl-p,) ,  for, while ( --f + co as R*p-I, a t  the same time H/K --f +GO as 
p-2. Thus there esists a solution for which /3 N O(R- f ) .  

I 
I 
I 

I I 

1 2 4 
G w ' ( p l  - p 2 )  

Prc:ul:t: 2. Grairitationally iirist,able casc C > 0. Skckli of the apcriodic growth ratj(> 
/s = - iol I'iqas it function of wavelength G' 2 g,lk for largo 12 ( = LP3/q7). According t>o in- 
finit'e condiict>ivit,y, values along tho abscissa < 3 woiild bc stttble. 

More precisely we can solve ( 3 2 )  by keeping terms of order R: in the expression 
for 5, ( 3 7 ) ,  and assuming /PG2 < I and JPG < 1. It is convenient to solve for (7 in 

( 3 8 )  

Thus passes through a mininium 2:R-i[(pl -p2)/p1]': for G = pl/(pl -pJ. 
For Iarger G, /? increases, merging with tlie infinite R solution when 

CJ 2 ~ P l / ( P l - P 2 ) >  

for which 13 - O(1).  For C: < p,/(pl-p,) and tending to zero, /? increases as 
G-8R-A. However, the validity of the present solution fails at /?2G N O(l) ,  at 
which point G N O(R-2) and j? - O ( R ) ,  while for G < O(R-Z), 6 1 and 
/3 + Q - ~ { ( p l - p 2 ) / ( p l + p 2 ) ) ~ .  We can now plot schematically /3 (=  +iQ)  as a 
function of G( cck-l) for R $ 1 as is done in figure 2 .  We shall not concern ourselves 
here with very small values of G 4 O(R-2), but see Discussion. 
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We next examine solutions along the positive imaginary axis of i2 by putting 
(1 = +- i,”. The solution for large G ( > 2p1/(p1 - p z ) )  is nearly as before. However, 
for large, but finite R, 6 is complex. This implies that 52 is complex and that this 
part of the solutionmust run close to, but not actually along the imaginary axis. 
We can obtain a solution for R 9 1 for this branch by a perturbation about the 
imaginary axis. By a similar perturbation we can show that for smaller values of 
Ci this brarich continues 011 close to  the real positive axis of Q (see figure 3). 

Im !2 

FIGURE 3. Gravitat,iorially unstable c a w  CJ > 0. Slrcxtch of complex growth rate i1 = ( I )  l’/g 
8s a funet,ion of wavelength G = q/IiTr2 for largo R ( = t73 /~g) .  The aperiodic, growing inodc 
lies along tho negative, imaginary axis, anti is shown cspanclcd in figure 2. 

The large R expansion goes as follows. If me set 

12 = Qo+ 12,f ...) < = f @ + f I l +  ...) (3!)) 

where A(L2,) = 0, then 

(2, = ~ ~ ( i 2 0 ) / ~ o K ’ ( Q @ )  N O(R- i ) ,  

where a prime denotes differentiation with respect to 12. We now expand about 
the positive imaginary axis of Q and putting Q, = i/SO (/lo > O), where 



Hence 

since only the positive real root is relevant. As Q + co, Po N O(G-4) +. 0 and 
R, + 0. As G + 2pl/(pl  -p2) ,  Rl --f co and the expansion diverges, indicating 
that higher order terms are of progressive importance as Po a 0. We now expand 

ImQ 

0 > ReR 
A 

G - 0  

FIGURE 4. Gravitationally stable casc G‘ < 0. Skctch of 11 in t,he cornplm 
plane: as a function of G for largo It?. 

about the positive real axis of R (but exluding the neighbourhood of the singular 
point Qo = 1 = G where solutions are trivial) and set K(Ro) = 0 to give 

where H(i2,) = Bpi( P1-102 ----I G - 1  fit2, K’(O0)  = (p l+pz)  
P1 + P2 

and 

(43) 

(44) 

according as G $ 1 .  From equation (40) we see that the Im(R,) 2 0 always. Only 
damped oscillations occur. On substitution, 

(45) 

As L1, + co, Im(SLl) N O(G-3) + co. As R, -+ 0, C: -+ 2pl/(pl - p 2 )  and Im(L2,) + 00. 
The expansion diverges at 61, = 0 and co, but at Ro = 0 it  merges with the 
expansion about the positive imaginary axis. 
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(b)  The gravitationally stable case, G < 0 

Setting K(Q,,) = 0 immediately shows that Q, is always real. Only positive 
values are relevant. It is noteworthy that the singular point no longer occurs. 
Straightforward manipulation shows that 

As \GI + GO, Im(Q,) --f 0. As ]GI + 0,  Im(Ql) --f G-XR-B, and diverges. Solutions 
are shown schematically in figure 4. 

4. Discussion 
The existence of aperiodic, growing solutions in case (a )  is not unexpected for 

the long waves satisfying G > 2pl/(pl -p2 )  which propagate along the magnetic 
field, since this is predicted by infinite-conductivity theory. What is unexpected 
is the emergence of a new branch o f  the solution for shorter waves 

O(P1/(P,-Pz)) 

with aperiodic growth rate I Q ]  - O(R-j) ,  or in physical terms 

The small power dependence on 7 implies a surprisingly rapid growth. For this 
mode there is a slip layer of small, but finite thickness a-l - k-IR-3 - 73g-i in 
which the field and conducting fluid cease to be effectively tied and interchange 
of the two fluids is possible. 

The increasing growth rate as C: --i 0 for very short waves goes as 

IWI - (kg)4 + cv. 

This is simply explained by considering the ‘magnetic Reynolds number ’, which 
for our purpose can be defined as IwI/ylC2, which is then of order 

IQIG2R - O(R-2) 

and is very small. The fluid, being virtually a non-conductor, is simply Rayleigh- 
Taylor unstable. Of course, it is at such short wavelengths that the neglected 
viscosity must play a part in limiting the rapid growth rate. A criterion of the 
significance of viscosity is obtained when the viscous Reynolds number Re of the 
magnetic slip layer of thickness a-l becomes of order unity, i.e. 

or 

where v is the kinematic viscosity, assumed isotropic. 
No overstable modes have been found in this problem in contrast to Jukes 

(1961), but there are in both ( a )  and (b) oscillatory modes damped at a rate cc R-6. 



5.  Conclusion 
into the MHD equations is sufficient 

in this particular example to introduce entirely new branches of solutions in 
comparisoii with idealized MHD in which 7 = 0. In this modified Rayleigh- 
Taylor problem what appeared to be stable, moderately long waves according 
to idealized theory are now found to grow aptriodically and quite rapidly at a 
rate cc qi .  There are no overstabilities, but only damped oscillations in addition. 

Finally, it must be emphasized that this is a specific result for a particular and 
simple model. Generalization to more complicated configurations of conducting 
fluids including pressure gradients, such as the pinch, is a subject for future work. 

Inclusion of small but finite resistivity 
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